
Journal of Statistical Physics, VoL 30, No. 2, 1983 

From Random to Self-Avoiding Walks 

Cyril D o m b  I 

A brief review will be given of the current situation in the theory Of self-avoiding 
walks (SAWs). The Domb-Joyce  model first introduced in 1972 consists of a 
random walk on a lattice in which each N step configuration has a weighting 
factor N-- 2 N l-Ii=0 i-[5=i+2(1 - ~06ij). Here i and j are the lattice sites occupied by the 
ith and j th  points of the walk. When ~0 = 0 the model reduces to a standard 
random walk, and when ~0 = 1 it is a self-avoiding walk. The universality 
hypothesis of critical phenomena will be used to conjecture the behavior of the 
model as a function of ~ for large N. The implications for the theory of dilute 
polymer solutions will be indicated. 

KEY WORDS: Self-avoiding walk (SAW); generating function; lattice 
Green's function; universality; polymer chain expansion factor. 

1. REVIEW OF PROPERTIES OF SELF-AVOIDING WALKS (SAWs) 

I should like to begin with a brief review of the properties of SAWs. In 
1969 in a Conference on "Stochastic Processes in Chemical Physics" I 
described the current situation as follows. (~ By rigorous mathematical 
analysis it has been possible to derive only very primitive properties of 
SAWs. However, conjectures based on Monte Carlo simulations and ex- 
trapolations from exact enumerations of short chains have indicated a 
number of interesting features in which SAWs differ radically from normal 
random walks. 

For example, if C N is the total number of walks of N steps, for a 
random walk 

CN = qN (1) 

where q is the coordination number of the lattice, whereas for an SAW 

CN~AI~NN 7 (2) 

Presented at the Symposium on Random Walks, Gaithersburg, MD, June 1982. 
I Physics Department, Bar-Ilan University, Ramat-Gan, Israel. 

425 

0022-4715/83/0200-0425503.00/0 �9 1983 PIenum Publishing Corporation 



426 Domb 

numerical values of the exponent 7 being about 1/6 in three dimensions 
and 1/3 in two dimensions. Similarly, if u u is the number of walks at the 
origin after N steps, for a random walk 

UN~CqNN -a/2 (3) 

whereas for an SAW 2 

UN~EI~NN ~ (4) 

numerical values of a being about 7 /4  in three dimensions, and 3 /2  in two 
dimensions. 

When we come to consider the mean square end-to-end length, (R2), 
we again find significant differences. For a random walk 

(RN 2) = N (5) 

whereas for, an SAW 
( R 2 ) ~ F N  ~ (6) 

numerical values of v being about 6 /5  in three dimensions, and 3 /2  in two 
dimensions. Finally, PN(X) the probability distribution of the end-to-end 
distance is asymptotically Gaussian for a random walk 

i d \d/2 / 
PN(X)~ t ~ )  expt-- d x2) (7) 

whereas it is non-Gaussian for an SAW 

PN (X) ~ Kx ~ - Llx] 8) (8) 

numerical values of 3 being about 5 /2  in three dimensions and 4 in two 
dimensions (0 is less well established). 

In the above-mentioned review I drew attention to the further impor- 
tant features: the distinction between "local" properties such as/~ and E in 
formula (4) which vary from one lattice to another in a given dimension, 
and "long-range properties" like exponents a, ~,, 6, v which depend on 
dimension but not on lattice structure in a given dimension; and the close 
analogy between the properties of SAWs and those of the Ising model of 
ferromagnetism. 

I should now like to summarize briefly the great progress in our 
knowledge of SAWs which has taken place since 1969. The analogy with 
the Ising model has been made precise. If we define an n-vector model of 
ferromagnetism in which the interacting spins are vectors in n-dimensional 
space, n = 1 corresponds to the Ising model and n = 0 to an SAW. This was 
discovered by de Gennes, r who showed that if n is put equal to zero in a 

2 The definition is modified slightly to allow a return to the origin at the final step. 
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diagrammatic expansion of the model, the only diagrams which survive 
correspond to SAWs. 

The "long-range" or "universality" concepts have been justified by the 
use of the renormalization group (3~ (RG). Exponents can be calculated 
directly as asymptotic series expansions in c (= 4 - d), and these series can 
be resummed to great accuracy by means of Borel transformations. (4) It 
now seems clear that the rational fraction estimates in three dimensions are 
not exact but approximations. Better estimates are 0.162 for 7 (instead of 
1/6), 1.764 for a (instead of 7/4), and 1.176 for v (instead of 6/5). 

In two dimensions there has been significant exact progress largely by 
B. Nienhaus, (5) who has investigated some special models whose critical 
properties should be identical with those of SAWs. He has concluded that 
the value of /* for the honeycomb lattice should be (2 + ~/2) 1/2= 
1.847759065. (The estimate of Guttman and Sykes (sa~ based on the ratio 
method of analysis had been 1.8481 + 0.0010, and that of M. F. Watts (Sb~ 
based on a Pad6 approximant analysis 1.8478 ___ 0.0002.) Nienhaus has 
shown that the value of a in (4) is exactly 3/2 and that of v in (6) is also 
exactly 3/2; he has been unable to calculate "t with the same confidence, 
but suggests that the value of 1/3 is incorrect and should be replaced by 
11/32. 

Another approach to SAWs which has borne fruit recently is that of 
Mandelbrot, (6~ who showed how to apply the concepts of self-similarity 
and fractal dimensions inherent in the mathematical work of Hausdorff 
and Besicovitch to real systems in nature. Recent analysis of Monte Carlo 
simulations by Havlin (7) has made effective use of these concepts. 

The RG analysis indicates that the SAW exponents in any dimension 
/> 4 will have the random walk values, but in four dimensions there will be 
logarithmic correction terms which can be calculated from field theory. (8~ 
The results are as follows: 

CN~QttN (lnN) 1/4 

uu~Rl~UN -2(INN) '/2 (9) 

(R2N)~SN(lnN) 1/4 

Finally the RG indicates that the first correction term to the asymp- 
totic formulas (2), (4), and (6) is a factor of the form 

(1 + a/N ~ ) (10) 

with 0 about 1/2 in three dimensions. Previously it had been assumed that 
the corrections were of Darboux form 

(1 + a/N)  (11) 
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Formulas (9) have been checked by exact enumerations (9) and Monte 
Carlo simulations, (7) and the confluent correction (10) has been observed in 
Monte Carlo simulations)7) 

2. THE D O M B - J O Y C E  MODEL (1~ 

Shortly after the 1969 Conference Professor W. H. Stockmayer sug- 
gested to me that it might be of interest to consider a "soft" adaptation of 
an SAW with a nonzero probability of revisiting a site which has already 
been visited. The model which resulted, and whose properties I investigated 
with the help of Dr. G. S. Joyce, weights each configuration of a random 
walk with a factor 

N--2 N 

H II (1 -  8,j) (12) 
i~0  j = i + 2  

Here i and j are the lattice sites occupied by the ith and j th  points of the 
walk, and a walk with s contacts will have weight (1 - ~oy. When ~o = 0 the 
model gives a standard random walk, and when ~o = 1 all configurations 
with nonzero contacts are eliminated, and an SAW results. 

One can clearly define the quantities CN(~O), UN(~0), (RN2(~0)), PN(X, ~0) 
for a Domb-Joyce  walk. If Cxs is the number of random walks with exactly 
s contacts 

CN(~O ) = ~ CN~(1 -- o~) ~ 
S 

[ s(s - 1) ~2 
= ~ C m[1-so~+ 

s ( s -  1 ) - - . ( s - r +  1) o~ r . ] 

+ ' ' "  r! "" 
(13) 

. i  

and hence CN(O 0 is a factorial m.g.f, for the number of contacts in a 
random walk. The CNs can be enumerated exactly on a computer for small 
N using a similar program to that for SAW enumerations, and this was 
done by M. Lax. (11) If we write v = (1 - o~), an expansion in powers of v is 
an expansion about the SAW limit, to be contrasted with the co expansion 
about the random walk limit. 

The model is the lattice analog of a continuum random walk model 
with a Dirac 8-function interaction which has been widely used in polymer 
theory.(12) The lattice model has a number of advantages: the behavior of 
an SAW at ~0 = 1 is quite well established; numerical computations and 
Monte Carlo simulations are much easier than for a continuum model; and 
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by considering different lattices in a given dimension it is much easier to 
separate universal from nonuniversal properties. 

3. P E R T U R B A T I O N  E X P A N S I O N  

A formal series expansion in the powers of ~0 was developed by Domb 
and Joyce/10) The terms in the expansion can conveniently be represented 
diagrammatically, and their evaluation is facilitated by the use of appropri- 
ate generating functions (g.f.'s). The first term in the expansion of CN(~O ) is 
represented diagrammatically in Fig. 1, and one must sum over all random 
walks with a single loop. If P(x) is the g.f. for chains (~,CN XN) and R(x) 
the g.f. for closed loops (~,u~xN), it is easy to show that the g.f. for the 
class of walks represented in Fig. 1 is P(x)2R(x). 

There are four types of diagram contributing to the coefficient of ~0 2 
and these are illustrated in Fig. 2. Diagrams 2a, 2b, and 2c can be 
expressed in terms of P(x) and R(x). They are "collapsible" or "bubble" 
diagrams but we called them ladder diagrams following the terminology 
introduced previously by Chikahisa (13) for the continuum problem. 

For higher-order terms Joyce and I found that we were able to 
calculate the ladder contributions exactly. However, the nonladder dia- 

Fig. 1. 

(a) 

(c) 

Fig. 2. 

(7 
(b) 

(d) 
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grams are much more difficult to deal with, and their calculation up to the 
third order was undertaken in collaboration with A. J. Barrett. (~4) 

For the expansion of (RN2(W)) we need to evaluate ~,I2CN(I), where 
Cu(i) is the number of walks terminating at 1, and this is best done by 
means of the g.f. 

P ( l ,x )  -- ~2 CN(I)x N (14) 

P(l, x) is the standard lattice Green's function whose asymptotic behavior 
for large l has been studied in some detail. (15) In three dimensions R(x )  can 
be written in the form 

R ( x )  = e (x )  + / ( x ) ( 1  - x) '/2 (15) 

where e(x)  and f ( x )  are analytic functions which can conveniently be 
expanded as Taylor series near x -- 1; the dominant term is f0(1 - x) 1/2. In 
two dimensions the corresponding expression is 

R ( x )  = e (x )  + f(x) ln(1  - x) (16) 

For the first nonladder diagram Fig. ld a new type of Green's function 
is required: 

W3(x) = F , P ( i , x )  ~ (17) 
I 

On the basis of numerical investigations we would expect that 

W3(x ) = e3(x ) + f3(x)ln(1 - x) + g3(x)(1 - x) '/2 (18) 

and we have calculated the important coefficient f3(1) by approximating to 
P(l, x) by its asymptotic form, and replacing the sum in (17) by an integral. 
But we feel that there is scope for a cleaner mathematical evaluation of 

e3(x), f3(x), and g3(x). 
Each new type of nonladder diagram introduces a new type of Green's 

function. At the third order, one of these diagrams contributes a coefficient 
which cannot be calculated exactly but must be evaluated numerically. 

4. FORM OF THE w-EXPANSION COEFFICIENTS 

From our experience of C N and u N for self-avoiding walks it would 
appear to be convenient to evaluate ln(CN(w)/CN} and ln(UN(W)/UN}. 
These should contain a "bulk" contribution analogous to N ln ~ and an 
"exponent" contribution analogous to a In N. If we write 

ln{ CN(w) /  CN } = g,o~ + g2w 2 + g3 w3 + " ' "  (19) 
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we find, in three dimensions, that for ladder graphs gr has a bulk contribu- 
tion of the form arN + b~ and an exponent contribution of the form 

I~(CorN ~/2 + Clr N~/2-1 + . . .  ) (20) 

For nonladder graphs, however, even terms in the exponent contribution 
contain logarithmic factors, 

g2 = do2 N l n N  + ho2N (21) 

g4 = do4N2(lnN) 2 + dl4 N21nN + d24N 

In two dimensions it is the ladder graphs which give rise to logarithmic 
terms which can be calculated to all orders 

r r r - - I  
gr = N  [aor(lnN ) + a i r ( i n N )  + . - .  ] (22) 

We have observed empirically that if we calculate universal quantities 
like the expansion factor, 

a 2 = (R2N(O~) ) / N  = C(N:)(w)/CN (o~) (23) 

where 

C(N 2) (~) = ~] 12CN (!, W) (24) 
I 

or the probability of ring closure, 

o N (~o) = u N ( ~ ) / C N  (~o) (25 )  

then the logarithmic terms all cancel in the expansion. 3 In three dimensions 
this has been established only at the second term, (16) but in two dimensions 
it has been established to all orders. (17) 

Let us now consider the ~0 expansion of a universal quantity, e.g., 

a 2 = 1 + k f fo  + k2oa 2 + k3t,.o 3 + �9 �9 �9 (26 )  

If we retain only the leading terms in powers of N, we find 

k ~  h[~Nr /Zk~o (27) 

in three dimensions and 

kr~h[~Nrkro (27a) 

in two dimensions. Here h 0 is a characteristic constant for each lattice, 
related to the volume of unit cell, and kro is universal. This suggests the 

3 A. J. Barrett has suggested recently (16a) that in expansions like (21) only terms linear in 
(ln N) survive, i.e., do4 is zero. 
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following functional form: 

a 2 = ~3(h0N l/2~0) in three dimensions (28) 

a 2 ----- ~b2(hoNr ) in two dimensions (29) 

It is not possible to establish results (28) and (29) rigorously since the series 
(26) is asymptotic rather than convergent. ( 18> 

5. RELATIONSHIP TO CRITICAL PHENOMENA 

We shall now see how the above results can be interpreted in the 
general framework of critical phenomena. We first summarize briefly the 
major conclusions which have emerged during the past decade or two on 
critical behavior of magnetic models. We consider a lattice of interacting 
spins which are classical vectors in n dimensions. Near a critical point, 
thermodynamic quantities are characterized by critical exponents, e.g., 
specific heat, 

C n ~ a ( T -  To) -~ (30) 

initial magnetic susceptibility 

x ~ b ( T -  T~) -~ (31) 

Critical exponents do not vary continuously but change discontinuously 
when there is a change in the interaction of (i) dimension d, (ii) symmetry 
n, (iii) range character o. We shall consider only short-range forces and 
shall therefore consider only d and n. A particular set of (d, n) defines a 
universality class; they are in a sense analogous to quantum numbers. 

We must remember that every thermodynamic quantity is derived 
from a partition function; for example for the Ising model 

X = + ( N ) e x p ( - f l N J )  = • •(N)y N (y  = exp -- fiJ, ,8 = l / k T )  
N = t  N = I  

(32) 

Hence to each ( T -  To) exponent there is an analogous N-exponent, and if 

9( N )~dt~ NN h 

then 

x ( T ) ~ e ( 1  - / , y ) - h - ' = f ( 1  - T J T )  -h- '  (33) 

This shows the relationship between ( T -  T~) exponents (30), (31), (33) and 
the N-exponents which we have defined for SAWs [e.g., (2), (4), (6)]. By 
universality the exponent h does not vary from lattice to lattice in a given 
dimension. 
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Amplitudes like a, b do vary from lattice to lattice but can be scaled. If 
appropriate scaling constants are introduced for each lattice then universal 
functions can be defined which characterize critical behavior (this is usually 
known as lattice-lattice scaling (t9~). For example, the magnetic equation of 
state in the critical region can be written in the form 

~ / =  ~( t0r ,  ho/4 ) (34) 

where t o and h 0 vary from one lattice to another, but q~ is a universal 
function. 

We now consider the crossover from one universality class to another. 
Consider a simple cubic lattice with interactions J in the x and y directions, 
and J' in the z direction. When J' = 0 critical exponents change from those 
of d -- 3 to those of d = 2. But if we wish to consider the behavior in the 
transition region of small J ' ,  we must introduce another constant 70, and 
we can write 

M = F(goJ', toT, hoH) (35) 

where F is a universal function called the crossover function. 
We have suggested that co = 0 for the Domb-Joyce  model is analogous 

to J ' =  0 in the above magnetic model, i.e., it is the point at which the 
sharp change of exponents occurs between random walk and SAW behav- 
ior. Hence the functions ~3 and ~'2 in (28) and (29) have the nature of 
crossover functions. The powers of N by which r is multiplied are analo- 
gous to what are called "crossover exponents" in critical phenomena. 

On the other hand we suggested that ~0 -- 1 is a point at which nothing 
dramatic happens, and is analogous to a nonzero positive value of J ' .  The 
critical exponents remain unchanged as w changes, and the amplitudes 
change smoothly. We tested this conjecture on the numerical data pro- 
duced by exact enumerations, and found that it fitted the data well. 

We have already mentioned that the value n = 0 for the n-vector 
model characterizes an SAW. Correspondingly it has been shown that the 
value n = - 2  characterizes a random walk, (2~ and the functions which we 
are seeking to evaluate in (28) and (29) are crossover functions from 
n = - 2 t o n = 0 .  

6. CALCULATION OF UNIVERSAL FUNCTIONS 

Universal functions like (28) and (29) are of great importance in 
polymer physics, (12) since they represent the effect of the excluded volume 
on polymer chain dimensions. Many approximations of mean field type 
were devised, giving results which differed very substantially from one 
another. The model used was a continuum Gaussian chain with the 
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Domb-Joyce interaction (12) replaced by -~08(r~j), where ~0 is the second 
virial coefficient of the intermolecular forces. The lattice model analysis 
readily extends to this continuum model with an appropriate modification 
of the Green's function R(x), and formulas like (27) remain valid with a 
suitable definition of h0. 

The great advantage of the lattice model is the possibility of exploiting 
the reservoir of information about SAWs. Direct use of the ~o expansion is 
limited to a small region which is unlikely to be extended significantly even 
if additional terms are calculated (a very formidable task) (see Fig. 3). But 
once the assumption of "smoothness" in the neighborhood of o~ = 1 has 
been accepted, standard methods of extrapolation can be used on exact 
enumerations for the Domb-Joyce model, and a reasonable estimate of 
asymptotic behavior can be derived for all standard lattices from ~0 = 0.5 to 
~0--1.0. The range of values up to ~0--0.5 can later be derived by 
interpolation. Results for a typical lattice are shown in Fig. 4. 

By comparing such calculations for different lattices the universal 
functions can be determined, and the range of validity of the two- 
parameter approximation can be assessed. In principle this validity should 
be restricted to large N and small o~, but in practice it is found that the 
useful range extends very much further. This can be well illustrated by 
taking only the dominant asymptotic term in ~3(z) in (28) 

eO3( z ) ~  l.64z 2/5 (36) 

and looking at the error in using the two-parameter formula at ~0 = 1. For 

CONVERGENCE OF VIRIAL EXPANSION 

3.0- 

~r2 

2.0- 

1. N = 9  
2. N = 3 2  
3, N - 9 8  
4. N = 2 4 3  
5. N = 1845 

1~ ol o12 o13 o14 o16 o17 o'8 1:o 

Fig. 3. Region of applicability of three terms of virial expansion for different N. 
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225 223 221 219 217 

z=12 211 
4.0 

= 2 9 

z=3 2 7 

2.0 

0.0 0.2 0.4 0.6 0.8 1.0 

CO 

Fig. 4. FCC Lattice. Estimates of a 2 based on (i) virial expansion near 0~ = 0, (ii) SAW and 
exact enumerat ions between r = 0.5 and ~o = 1, (iii) interpolation for the intermediate region. 
For the two-parameter approximation lines z = const should be horizontal. 

the diamond sc, bcc, and fcc lattices the amplitudes F in (6) give rise to 
values 1.682, 1.663, 1.659, 1.648 respectively, so that the deviations are of 
the order of a few per cent. 

7. CONCLUSIONS 

Our discussion has aimed at providing a bridge between the theory of 
random walks and critical phenomena. We should like to suggest that each 
of these disciplines has something to learn from the other. The fruitful 
developments of recent years in critical phenomena have enabled us to 
interpret the nature of the transition from random to self-avoiding walks. 
And for the research worker in critical phenomena a model has been 
provided of a crossover from one universality class to another which can be 
explained in considerable mathematical detail. 
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